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The paper presents the method of solving a class of two-dimensional problems
of the similarity flow of an incompressible fluid with a free surface. The fluid is
agsumed to be non-viscous and weightless. We consider two-dimensional irrota-
tional similarity flows with dimensionless hydrodynamic characteristics depend-
ing only on the ratios /vy, y/vyt, where x, y are Cartesian co-ordinates, ¢ is time
and v, is a constant of the velocity dimension.

The proposed method is based upon using the function introduced by Wagner
(1932) and can be applied to the problems where the flow region is bounded by
free surfaces and uniformly moving (or fixed) rectilinear impermeable boundaries.
Introduction of Wagner’s function makes it possible to reduce each of the prob-
lems under consideration to a non-linear singular integral equation for the real
function.

The method is illustrated by solving the classical problem of the uniform
symmetrical entry of a wedge into a half-plane of a fluid.

1. Introduction

Hydrodynamic problems of flow with free surfaces (in particular, the water-
entry problems) are essentially non-linear. The difficulty in solving these problems
is that of satisfying the non-linear boundary conditions on the free surface, which
is not a stream-surface in unsteady motion.

The problems under consideration have been studied by many authors. The
theoretical analysis of similarity flows of an incompressible fluid was first pre-
sented by Wagner (1932) who obtained, in particular, an approximate solution
of the wedge water-entry problem.

Thereafter this problem was investigated by Pierson (1950), Garabedian (1953),
Borg (1957), Moiseev et al. (1959) and others. The similar problem of the impact
of a water wedge on a plate was studied by Cumberbatch (1960). But until now
no exact solutions (analytical or numerical) of these problems have been
obtained.

The complete solution was obtained only for the linearized wedge water-entry
problem. For the case of a compressible fluid it was given by Grigoryan (1956) and
Sagomonyan (1956); the results for an incompressible fluid were first written
explicitly by Mackie (1962).

In §2 of the present paper the definition of Wagner’s function and its main
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properties are recalled. In §3 we give the method of Wagner’s function for
reducing the problems under examination to a singular integral equation. In §4
the integral equation is derived for the problem of the uniform symmetrical entry
of a wedge into a half-plane of a fluid. In §5 we show the applicability of the
successive-iterations method for solving the integral equation obtained and give
the scheme of numerical integration of this equation.

Results of the numerical solution of the wedge problem are given in §6.
Presented and analyzed here are the free surfaces for different wedge angles and
the curves of the pressure distribution along the wedge; in particular, the free-
surface behaviour near the wedge is investigated. The obtained numerical solu-
tion is compared with the analytical solution of the linearized problem.

2. Wagner’s function

Let , y be fixed Cartesian co-ordinates in the plane of flow (which we shall
call the ‘physical plane’), t, time and £ = z/(vyt), 7 = y/(v,t), the dimensionless
similarity variables (vy = const.). In the (£,7)-plane a stationary region corre-
sponds to the physical flow region varying with time. But the part of the boundary
of the flow region, corresponding to the free surface, is unknown in advance in
both planes.

The velocity potential ¢(z,y,t) and the stream-function ¥(x, y,t) of the flows
under consideration have the form

P, y,t) = v§tOE,7), Yz, y,t) = §t¥ (),

where ®(£,9) and W'(£, ) are harmonic functions of £ and 7.

Ulz,t) = p(=, y,t) + 1 (x, y,1)
is the complex velocity potential in the z-plane (z = x+¢y). Let us introduce
function V(Q) = OEMN+I¥EY) (€ =E+in).
The function V’({) is connected to the complex velocity U.(z,t) by the obvious
relation U'(z,t) = 0, V'(0). 2.1)

Therefore, it is natural to call the function V'({) the complex velocity and V({)
the complex velocity potential in the {-plane.
Wagner’s function # can be determined as followst

o= J(F57) e (2.2)

The purpose of introducing Wagner’s function is that, in the plane of this
function, the free surface of a fluid is always represented by a segment of a straight

+ Wagner introduced the function k (for the wedge water-entry problem) in a slightly

different way, namely
z [ (dU.(z, 1)
h = 7
[ =

where z = 2+ %y and z, y arc the Cartesian co-ordinates moving uniformly with the wedge.
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line (or by a broken line). We shall demonstrate below that for the flows under
consideration the flow region bounded by the free surfaces and the uniformly
moving (or fixed) rectilinear impermeable boundaries, is always known in the
plane of Wagner’s function. For this purpose we represent the integrand expres-
sion of formula (2.2) in the form

JOE) = qarwa (23)

and investigate first of all the behaviour of function (2.3) on the free surface,
following Wagner’s presentation.
In the similarity low with the variables

xr
€=v_0t’ 77=at (2.4)

the following relation holds for the velocity vector U(z, y,¢)
- r Y
Uz, y,t) = v, B ('uot"uot) .
After differentiating the left- and right-hand sides of (2.5) with respect to t,

we obtain

dli(z,y,t) _ — [3%(x/v0t, ?//Uot)__x_ 0B (x[vet, y[voel) y

a — ° Axfvgt)  w,t? Ayfvet) w2’
Let us consider (2.6) on the free surface when ¢ is fixed. With ¢ fixed, the variables
x, y on the free surface are single-valued functions of the arc length s measured

along the free surface. In this case (2.6) reduces to the form

AWz, y,t) _ ol(x,y,1) (ds x ds y)

(2.6)

dt ds (2.7)

The expression in the brackets in (2.7) is a scalar function, and hence the vector
oW(x, y,t)/0s has the same direction as the acceleration vector dl(x,y,t)/dt at
any point of the free surface. Pressure on the free surface being constant, the
pressure gradient on the free surface is normal to the latter at any of its points.
Therefore, according to the Euler equations, the acceleration dli/d¢ of fluid
particles lying on the free surface is also normal to the free surface. Taking this
into account, it follows from (2.7) that the increment of the velocity vector along
the free-surface element is normal to the free surface at any of its points.

The same fundamental fact can be re-proved in a more formal way. In fact,
the total differential of the function U(x, y,t) has the form

0
dll(z, y,t) = au(?, 8 g 4 311(;;-” %) 4o 4 u(’;?’/y’ ) gy, (2.8)

Introducing the similarity variables (2.4) and taking into account (2.5), the rela-
tion (2.8) can be reduced without difficulty to the form

Az, y,t) = v, [3%;% ™ gg + 393;‘;; 1) dv;] 2.9)
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or, as might be expected,
AWz, y,t) = v, dB(E, 7). (2.10)

TFormula (2.10) shows that in the flows under consideration the differential of
function W(x, y, t) with respect to variables z, y, ¢ coincides (to within the constant
factor v,) with the differential of function B(£, 7) with respect to variables &, .
Let us fix variable ¢ and consider (2.10) on the free surface. The vector dll(x, y, {),
having the same direction as the acceleration vector, is normal to the free surface.
Then, according to (2.10) ,the direction of the normal to the free surface in the
(£, 7)-plane is also the direction of the vector dB(§, #) which is the increment of
the velocity vector along the free-surface element.¥

This fact makes it possible to construct the free-surface image in the plane of
Wagner’s function.

Therefore, let { be a point of the free surface 5 = 5(£) and let the contour of
integration in formula (2.2) include the part of the free surface from infinity]
to ¢ (the path of integration is chosen so that the flow region would be from the
left). Now let us investigate the behaviour of the argument of function

J@V(§)dg)

on the free surface. As shown above, the increment d V7({) of the velocity vector
along the free-surface element is normal to it and can be directed along the out-
ward or inward normal.

Let us first consider the case when (under the chosen path of integration) the
vector dV'(¢)is in the outward normal direction to the free surface. The argument
of vector d{ at a point 34 on the free surface BC is denoted by 6 (figure 1). Then
argdV'({) = 6 —3m as d{ and dV'({) are mutually orthogonal, and hence

argdV'({) = m—0
as vectors dV’(§) and dV’({) are conjugate. Taking this into account, we obtain
arg J(dV'(£)dE) = HargdV'(£) +argdl] = im. (2.11)

Condition (2.11) is satisfied at any point of the free surface. Therefore the incre-
ment of Wagner’s function 2({) has the argument }7 on the considered part of
the free surface.

+ The increment of the velocity vector is not orthogonal to the free surface in the case
of flow with the similarity law of the form

Mz, y, t) = ctvB(E, 7), where § =

In this case the relations

AUz, y, 1)
dt

T

prst

cty+1’

= Y@y 0-r+ =3

Mz, y,¢) {dsx dsy
o8 (6:1: t ty dyt )
dl(z, y, t) = yetr L B(E, n) dt+cty ABE, 1)
hold, instead of the conditions (2.7) and (2.10)
As will be seen from the following, the similarity of this form excludes the construction
of the flow region in the plane of Wagner’s function before solving the problem.

1 In the similarity problems under consideration, the free surface reaches the point at
infinity of the {-plane.
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In a similar way it can be shown that the argument of increments of Wagner’s
function is equal to — 17 on those parts of the free surface where the vector
dV'({) is in the inward normal direction to the free surface.t

Thus, the free-surface image in the plane of Wagner’s function is in the
general case a broken line, composed of the rectilinear segments inclined to the
axis of abscissas at the angle 37 or — 1. If the vector d 77(¢) on the free surface
does not change its direction from outward normal to the inward one (or con-
versely), then the free surface is represented in the plane of Wagner’s function
simply by a rectilinear segment making the angle 7 or — 17 with the axis of

abscissas.

Ui 41
avie) avi(g)
L c
A dt ™ .
av’(6) dv’'©)
A 4
av@
A
Ms W ar
Y
v’
C

F16UrE 1. The directions of vectors dV’({) and d{ on the free surface OB, and rectilinear
impermeable boundaries B4 and AC (illustration to the formula by Wagner (1932)).

We investigate now the behaviour of the function A({) on the rectilinear seg-
ment AB (figure 1), being the image of a uniformly moving impermeable recti-
linear boundary. According to the impermeability condition all the fluid particles
on the impermeable contour have the same normal (to the boundary) velocity.

Therefore, the velocity-vector increment d V'({) at a point M, on the impermeable
rectilinear boundary is directed along the boundary, being in the same direction

as the vector d¢, or opposite to the latter. In the first case argdV'({) = argd{
whence it follows that argd V'({) = —arg d{, and then the function /(dV'(£)d{)
has the argument equal to zero (or + 7rn) on the impermeable boundary. In the

case when d{ and dV’({) have opposite directions, it can easily be shown that

+ In general, the argument of increments of function 2({) may differ from the indicated
values + 1w by 2mn, where the integer n is determined by the frame of reference and the
flow kinematics on the whole.
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arg J(dV'(£)dl) = + L7 (or +im+mn), the sign depending on the direction of
path along the boundary.

If the impermeable boundary AC (figure 1) is stationary in the (z,y)-plane,
the behaviour of the argument of function ./(d V'({)d{) is the same as in the case
just considered. Thus, the image of the uniformly moving or stationary recti-
linear impermeable boundary in the plane of Wagner’s function is a rectilinear
segment parallel or orthogonal to the axis of abscissas.
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Ficure 2. The flow region in the physical plane z, y for the unsymmetrical
entry of a wedge into a fluid.
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Freure 3. The flow region in the plane of Wagner’s function for the symmetrical and
unsymmetrical entry of a wedge into a fluid, and for the impact of a water wedge on a wall.

Below we consider only such problems in which the flow region is bounded by
the free surfaces and uniformly moving (or stationary) impermeable rectilinear
boundaries. For the problems of this class, as seen from the above, the flow
region is always represented in the plane of Wagner’s function by a polygon.
For example, in the case of symmetrical solid-wedge entry into a half-plane of
afluid (orinto a fluid wedge) the flow region is represented in the plane of Wagner’s
function by a rectangular isosceles triangle. In the case of unsymmetrical wedge
entry the flow region in the plane of Wagner’s function is of the same form as in
the symmetrical case (figures 2 and 3).

The method of Wagner’s function can be also applied to solve the problem
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of the impact of a water wedge on a wall (figure 4), as in this case the flow region
in the plane of Wagner’s function is known and represented by the same triangle
ag in the wedge water-entry problem.

In the problem of the uniform spreading of a constant pressure wave over the
free surface being initially non-perturbed, the flow region in the plane of Wagner’s
function is represented by a square.

v 4 ¢
/ )

Ficure 4. The flow region in the physical plane z, y
for the impact of a water wedge on a wall.

[/
v

3. Method of Wagner’s function for reducing the problems under
consideration to a non-linear singular integral equation

The essence of the method consists in the following. The problem of the
similarity potential flow in the region bounded by the free surface and imperme-
able rectilinear boundaries can be formulated as the problem of determination,
in the flow region (in the similarity (£, )-plane), of the velocity potential ®(&, %),
a harmonic function, satisfying the constant-pressure condition and the kine-
matic condition on the free surface 3 = 5(£), and the impermeability conditions
on the solid boundaries.

Let V({) = ®(&,9)+1¥(£,7) be the complex velocity potential in the {-plane
(¢ = £+ ty). We introduce the auxiliary parametric variable w = » + ¢» and con-
sider the analytical function { = {(w) mapping conformally the upper half-plane
Imw > 0 onto the flow region in the {-plane in such a way that the free surface
of a fluid is represented by a segment L of the real axis of the w-plane and the
rectilinear impermeable boundaries by the remaining part of the real axis which
we denote by I (both L and ! may contain a point at infinity).

Introduction of function {(w) makes it possible to reduce the problem to the
determination of two analytical functions V{(w) and {(w) in the upper half-plane
Imw > 0 using the following boundary conditions: functions V(u) and ¢(u) have
to satisfy the constant pressure and kinematic conditions on segment L, and the
impermeability and obvious geometric conditions on [; the latter follows from
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the fact that the argument of the function {’'(«) on ! is known and equal to the
constant or piecewise constant function. Thus, both on L and ! there are two
conditions for the determination of two functions ¥V (w) and {(w) analytical in the
upper half-plane.

Let us introduce Wagner’s function A({). In the plane of this function the flow
region is represented by a polygon. By means of the Schwarz—Christoffel formula
we can write the function A = h(w) which maps conformally the upper half-plane
Imw > 0 onto the interior of the polygon in the A-plane. Elimination of the
variable - from the expression & = A(w) and relation (2.2) gives an explicit ex-
pression for the complex velocity V’'(w) in terms of the mapping function §(w).
The expression of function V’'(w) in terms of {{(w) gives a possibility of excluding
an unknown function V{(w) from the obtained boundary-value problem for two
functions V(w) and {(w), and the problem is thus reduced to the determination
of function §(w), analytical in the upper half-plane Imw > 0, which has to satisfy
the kinematic condition on segment L and the geometric condition on /. The
second condition on each of these intervals (the constant-pressure condition on L
and the impermeability condition on [) has already been used for the determina-
tion of the flow region in the plane of Wagner’s function.

Introduce the real function f(u)(u € L) representing the argument of {’(u)
on L. Then, remembering that the argument of function {’(%) on ! is known, we
can write (by means of the Schwarz integral) the representation of the mapping
function {(w) in terms of the real function f(u). The substitution of {(w) expressed
in terms of f(u) into the kinematic condition on the interval L gives a non-linear
singular integral equation for the determination of f(u). Function f(u) being
determined, the hydrodynamic problem can be considered as solved since the
mapping function {(w) and the complex velocity V'(w) at any point of the flow
region are expressed in terms of the function f(u) by quadratures.

4. Symmetrical entry of a wedge

We consider uniform symmetrical entry of a wedge into a half-plane of a fluid
which is assumed to be incompressible, non-viscous and weightless, the wedge
angle 20, being arbitrary (o < ).

Let z, y be Cartesian co-ordinates with the origin at the point of intersection
of the unperturbed free surface with the axis of symmetry (the y-axis is directed
opposite to the wedge movement along the axis of symmetry). Because of the
symmetry only the half > 0 of the flow region is considered.

As the flow under consideration is the similarity flow, the velocity potential

¢(z, y,t) has the form Bz, y,t) = v2DE, 7), (4.1)

where £ = x/vgt, 5 = y/vet (v, being the velocity of the wedge), and ®(£,7) is
aharmonic function of £ and 7 in the flow region C BAC (figure 5) .On the boundary
of the flow region, the function ®(§,#) has to satisfy the following conditions: on
the free surface 5 = #(£), the constant pressure condition

oD o0 1 (8@)2 1(?9)2 —0

‘D(g»?])“ga—g—ﬂ(g)%"i E3 P (4.2)
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and the kinematic condition
oD o0

a7 (&) 5z +67€)—n(€) = 0; (4.3)
on the wedge and axis of symmetry, the impermeability conditions
o0 oD .
i COS oty — = sine, =sine, on AB, (4.4)
o0
- 0 on AC. (4.5)

The free surface at infinity has to approach the unperturbed free surface
asymptotically.

C
Ficure 5. The half of the flow region CBAC in the similarity plane { = £+ 14y
for the symmetrical entry of a wedge into a fluid.

The wedge-entry problem can be reduced, first, to the boundary-value problem
for two functions analytical in the upper half-plane. Therefore, let

V() = ©(&,m) +i¥(E,7m)

be the complex velocity potential in the {-plane ({ = £+147). We introduce

w = u -+ and consider an analytical function { = {(w) which maps conformally

the upper half-plane Imw > 0 onto the flow region in the {-plane in such a way

that the points { = {5 (point of contact), {, = —1 (wedge apex) and {= 0

correspond to w = 0, w = 1 and w = corespectively (figure 6). In so doing the free

surface of a fluid will be represented by the real negative semi-axis of the w-plane.
Conditions (4.2) and (4.3) take the form

§'(w) &'(w) Re V(w)—Re [{(w) §'(w) V(w)]+ 3V (u) V'(w) =0 (-0 <u<0),
o (4.6)
Re[iV'(u)] = Re[5¢'(u) &{uw)] (—o0 < u < 0). (4.7)
On segment 0 < u < 1 two_ conditions have to be satisfied: condition (4.4) which
can be reduced to the form

Re[iV'(u)] = |'(u)|sine, (0 <w<1), (4.8)
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and the obvious geometrical condition
argl'(u) = —(Im+eg) (0 <u<l). (4.9)
When u > 1, we have condition (4.5) taking the form
Re[tV'(w) =0 (1 <u< ), (4.10)
and geometrical condition

argl'(u) = —3m (1 < u < o0). (4.11)

Fioure 6. The image of the flow region CBAC in the w-plane
for the symmetrical entry of a wedge.

The problem is thus reduced to the determination of two functions V(w) and
{(w), analytical in the upper half-plane, satisfying boundary conditions (4.6)-
(4.11) on the real axis.

We reduce the obtained boundary-value problem to the determination of the
function {(w). To this end, we introduce Wagner’s function

RE) = f i A/ (dzlg)) dc. (4.12)

In the plane of this function the flow region CBAC is represented by the interior
of the isosceles right triangle (with the size unknown in advance) depicted in
figure 7. The function A(w), conformally mapping the upper half-plane onto the
interior of the triangle in the A-plane with the correspondence of the angular
points indicated in figures 6 and 7, has the form

h= icofww—%(w— I)tdw (Ime, = 0). (4.13)

Eliminating the variable b from expressions (4.12) and (4.13) and taking into
account that V'({z) = {5 (see Dobrovol’skaya 1965), we obtain
= w 1
V'(w) =gl (w)—cg ¢ (w) f wd(w— 1)1 — dw. (4.14)
0 ¢'(w)

Formula (4.14) gives an explicit representation of the complex velocity in terms
of the derivative of the function {(w) everywhere in the upper half-plane
Imw > 0. It should be noted that representation (4.14), obtained with the help
of ‘Wagner’s function, is the consequence of conditions (4.6), (4.8) and (4.10)
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since these conditions have been used for the determination of the flow region
in the plane of Wagner’s function. Eliminating function V’(u) from the kinematic
condition (4.7) with the help of (4.14), we obtain the following boundary con-
dition for function {(u) on the real negative semi-axis u < 0

Re {ig’(u) f : [m)+cgu—%(u— 1)-1 L] du} = 0. (4.15)
0 &'(w)
On the positive semi-axis, the function {(u) has to satisfy condition (4.9) for
O0<u<land (41l)forl € u < +o0.

A

®

45°

Figure 7. The flow region CBAC in the plane of Wagner’s function
for the symmetrical entry of a wedge.

The problem is thus reduced to the determination of the function {(w), ana-
lytical in the upper half-plane Imw > 0 from the boundary conditions (4.15),
(4.9) and (4.11) on the real axis.

The boundary-value problem for {(w) will be reduced below to the integral
equation for a real function f(u) connected with {’(u), when —oo < u < 0, by

the relation  arg{'(u) = ~alf(u)+1] (=0 < <0). (4.16)
The function f(u) has to satisfy the condition
fuy—>0 when w—> —oo, (4.17)

as the free surface has to approach asymptotically the unperturbed free surface
at long distances from the wedge. Using (4.16) and taking into account that the
argument of function ¢'(u) for 0 < u < + o0 is known from the boundary con-
ditions (4.9) and. (4.11), we can write (with the help of the Schwarz integral for
the upper half-plane) the representation of mapping function {(w) in terms of
the real function f(u). This representation has the form

' fw)

¢'(w) = —icw 2 (w—1)~*exp [—f_w mdu] (>0, 0=aym). (4.18)
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Using the Sokhotsky-Plemelj formula for the limit values of the Cauchy-type
integral of expression (4.18), we can write the limit values of {'(w) (determined by
(4.18)) when variable w tends to the real value u from the upper half-plane
Imw > 0. The substitution of {’'(u) expressed in terms of f(u) into the kinematic
condition (4.15) gives the following non-linear singular integral equation for the
determination of the function f(u)t

1c2 ) wl-%(u — 1)~z exp [ ’ ML—(?EL dul]
fu)y=—-=-2 — — du. (4.19)
me . Jo tu~tte(y — 1)~ exp [ —f_w %%dul] du

Tt is seen from (4.14), (4.18) and (4.19) that the solution of the problem contains
two real parameters (¢ and ¢,) and a complex parameter {p; the real and imaginary
parts of the latter are connected to each other by the obvious dependence

£p = (1 +75) t8a,. (4.20)

Thus, the solution contains real parameters ¢, ¢, and 75 for which determina-
tion there are three conditions:

L) = —i, (4.21)
Im&(u) >0 when wu—>—oo0, (4.22)

Vig)=1¢ at {=—u. (4.23)

Using these conditions, we find that the value c§/c? from integral equation (4.19)

is determined by the following functional

1 0
o2 f w (1 —u)~*exp [ - &)—dul] du
0 0

—oo Uy

¢ w1 (1 — )M b fn) dul du
o jl (1—wu) 2t exp[ fw) ]

0 — Uy —

(4.24)

For the numerical integration of (4.19), it is more convenient to introduce
positive variables of integration ¢ = (1—wu)™! and 7 = (1 —u,)~* which vary
within 0 € ¢t < 1 and 0 < 7 < 1. Then, (4.19) is transformed to

g
wc? Oft -%(l—t)“%“exp[—tf {())d‘r]dt

(the notation I(¢) is introduced for brevity of the subsequent discussion). Intro-
ducing variable r = (1 +«)~! into expression (4.24), we obtain

- e _a 1 flrydr
o _J‘%r #(1 —r)~H+e (2r - 1) exp{—fo ;[?{——2_(1/7)}_1];(%

L Y L R T
[ amnmor e[ Mo

1c2
f(t) = dt = ﬂﬁlm (4.25)

(4.26)

t A copy of the author’s derivation of this equation, which is taken from Dobrovol’skaya
(1965), will be sent to any interested reader on request to the Editor.
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Thus, the wedge water-entry problem has been reduced to the determination
of the solution of the non-linear singular integral equation (4.25) for the real
funection f(#).

The function f(t) at any point ¢ € [0, 1] is, by definition (to within the constant
factor and sum), the angle of inclination of the free surface to the £-axis at the
corresponding point of the free surface, and because of this, f(¢) is bounded on the
whole segment [0, 1] including its ends (t = 1 corresponds to the point of contact
of the free surface with the wedge face and ¢ = 0 to the infinite point of the free
surface).

If the solution of (4.25) is found, the mapping function {(w) can be determined
in terms of function f by expression (4.18) and the complex velocity at any point
of the flow region by formula (4.14).

The free surface of a fluid is determined in terms of f(¢) by the following
parametric equations obtained from the formula (4.18):

o) = e[ ot | ] (emena G0

where the constants ¢ and 7, have the form

1 1
c= {cosocof% 41 —r)-+2(2r— 1)~ exp [—fo 'WJLL_,T()I(;T)}——T]] dr

_f ' t=4(1 —t)-t+eexp [ - tf: Jr) dT] sin [7f(t)] dt}_l; (4.29)

0 7(1—1)
1
N = cfol t=3(1 —t)-%+“exp[—-t . Ti);'(i)t) d‘r] sin [7f(t)] dt. (4.30)

It should be noted that the asymptotic behaviour of the free surface at infinity
can be obtained from equations (4.27), (4.28). Really, the analysis of (4.25) near
the point ¢ = 0 shows that f({) = O(t}) when ¢ - 0. This estimate together with
(4.27), (4.28) considered at ¢t — 0, gives an asymptotic of function #(£) at £ - oo
which, as in the linearized theory of a thin wedge (Mackie 1962), has the form

n = K2, (4.31)
where K, = K,(«).
The pressure distribution on the wedge face can be obtained from the Cauchy-
Lagrange integral

2Re[V(r)—&r) V| eeewl + [V V' (Dlgmg+0() =0 (3 <7 <1), (432)

where p(r) = Ap/(}pv3) is the dimensionless pressure on the wedge face,

Ap =p—po
(py is the pressure on the free surface); point » = } corresponding to the wedge
apex {, = —¢ and r = 1 to the point of contact {5. Correspondence between the

points of segment [} < r < 1] and the co-ordinates £, 7 on the wetted wedge face
is given by formula

§(r) = &(r) +in(r) = [Ep—csinog Hy(r)] + i[5z — c cos ag Hy(r)], (4.33)
52 Fluid Mech. 36
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1 1
Ho(r) = f 7‘_%(1 — T)_%ﬂLa (27‘—- ]_)_“ eXp [ -—-J.O 7T7'{T——fg/)7‘—)}——l—] dT] d’l’. (434)

Functions V@)V Olemterr Re[Er) V()] pmpin]

and Re V(r) in (4.32) have the form

I, 2

02 . 2 2
s V'(é)]gzgm:[EB—;"smaoGo(r)] +| =+ eosanGln)| . (439)

where

« ! flr) .
f (1—7) — 1)1+ exp[f T—[T{Q Uni=1 ]dr (4.36)
Re[{(n) V |§~§(r)] = [Ep—csinag Hy(r)] [£— (c§/c) sin oy Gy(r)]
—[np—ceosagHy(r)][—np +(c§lc) cos g Gy(r)];  (4.37)

Re V(r) = §(¢5 +75) +f: rH(1—r)tte(2r — 1)

xexp[ f017[7{2 A7) =1 ][c%GO(r)—c(nginocO+7]Bcosoco)](lr.
(4.38)

Given the above formulas for the pressure on the wedge face it is possible to
estimate the behaviour of the pressure curve in the vicinity of the wedge apex.
For this purpose it is sufficient to differentiate the Cauchy-Lagrange equation
(4.32) with respect to r, to take into account the singularities at » = } of the
improper integrals Hy(r) and Gy(r) and to use formula (4.33) connecting variable »
with the similarity variables £ and 5 on the wedge. As a result we have

P =p — K, £20-%), (4.39)
where p , is the pressure at the wedge apex and K, = K, («).

5. Method of numerical integration of the basic integral equation of
the problem

For the numerical integration of (4.25) the method of successive iterations
has been used. Below we dwell on some peculiarities of realization of this method
for the given equation.

Point ¢ = 1, as seen from the equation, is the singular point of the integrand
of the outer integral I(t). Integral I(f) has to be convergent at this point since
function f(¢) has to be bounded, by definition, on segment [0, 1] including its ends.
Let us analyze the behaviour of the integrand of integral I (¢) near the point¢ = 1.

We denote by £, the angle between the wedge face and free surface at the point
of contact B. Then we have

fy=3+a-4 (ﬂ:’%’zo). (5.1)
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Now the Cauchy-type integral in (4.25) has the following representation near
the pointt =1

b fm)

o T(T—1)

dr = (3 +a—8)In(1-1) +o(1).

The following estimates for the functions standing under the integrals in (4.25)
near the point ¢t = 1 (¢ < 1) can be obtained

(1—t)-1-*exp [t J ') d’T] = (L—t)-4-A w0,

0 T(T—t)

1
(1 — )t - f(r) = t=H(1 — 148 g~
tE(1—t)% exp[ ¢ ()T(T—t)dT t—3(1—1t) e~
Thus we find from (4.25) that f'(¢) behaves near { = 1 as (1—¢)~4-24, Hence
integral /(t) at the point ¢ = 1 is an ordinary improper integral which converges
if and only if the following condition is satisfied:

B<i (5.2)

Thus, the magnitude 8, of the angle between the free surface and the wedge face
at the point of contact cannot exceed 1 for any wedge angle.

From conditions (5.1) and (5.2) it follows in turn that, if we use the iterations
method, then for existence of every successive iteration f, ,, it is necessary that
all the previous iterations would satisfy the condition

tta<fil)<i+ta (k=0,1,...,n) (5.3)

which is the condition of convergence of integral I(t) at the point ¢ = 1.

It can be shown that condition (5.3) gives a possibility of constructing as many
iterations as desired. Therefore, let us take as zero approximation a one-para-
meter family Q of suitable (monotone, vanishing at ¢ = 0 and providing con-
vergence of I(t)att = 0)curves fy(t) (0 < ¢t < 1) with parameter F = fy(1) belong-
ing to segment R =[}+a, }+a] Substituting into (4.25) the function
fot) € Q with Fy = 3 + o we obtain that F, = fi(1) = 0. If F, = }+«, it follows
from (4.25) that F] = co. Thus, choosing as zero approximations the curves with
F, e R, we obtain the first iterations with 0 < F; < oo, and then there neces-
sarily exists a smaller segment R (lying entirely in R) such that the values
Fy,e RY will correspond to F; e B and 0 < F, < co. Carrying out the same
reasoning for the family of functions f,(f) with F, € R and then continuing this
process further, we can obtain an unlimited sequence of segments R®™ con-
tained in each other such that, at ¥ e R™, the above process makes it possible
to construct at least (n+ 1) iterations; however, the following iterations, be-
ginning with a certain number, will not in general exist; in fact, it is sufficient
that F;, should be outside the segment R and under this condition the (n + 2)-th
iteration would not exist.

The sequence of continuously decreasing segments R®), when n — co, deter-
mines (at least) one point F¥, by approaching which we can obtain as many
iterations of (4.25) as desired.

52-2
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It is clear from the above that with this method of constructing the successive
iterations the process of iterations for (4.25) will not converge in the usual sense
and can prove to be only asymptotically convergent. The asymptotic con-
vergence in this case is understood in the following sense: the number of ‘con-
vergent’ iterations of a given equation can be as great as desired but the following
iterations generally speaking, do not exist.

For the numerical integration of (4.25) we have taken as zero approximation
fol8) (0 € £ < 1) the family of monotone increasing functions having, near the
ends of the integration interval, the following representation (arising from the
elementary analysis of (4.25))

ft) = O(t%) when t-0, .
f@&) = F,—v(1—t)32% when t—>1 (0<pf<}). (6.5

,-\
'y

The value F;, = f,(1) has been taken as free parameter.

All the integrals in (4.25) have been computed with the variable step of
integration decreasing near ¢ = 1, the number of steps having been chosen in
such a way that the distance between the last point of integration and 1 is equal
to some small value ¢ which choice was determined by the necessary accuracy
of calculation. The computation has shown that the value ¢ is of the order of
10712-10-18 (depending on the value of ) decreasing with decreasing «. The
refinement of the step of integration to such a small magnitude is due to the very
special behaviour of the integrands of (4.25) near ¢ = 1. The partial sums of the
integrals near the ends £ = 0 and ¢ = 1 have been computed with the help of
obtained estimations of the corresponding integrands near these points.

As would be expected, the process of iterations for (4.25) has proved to be
asymptotically convergent. The computation has shown that for obtaining the
solution f(¢) to the practically required precision it is sufficient to construct only
10~-12 iterations, 4-5 mean iterations having proved to be almost coinciding.

The computation has confirmed to high accuracy the character of behaviour
of the function f(¢) near ¢ = 1, described by formula (5.5). However, the curve
f(t) can be represented in the form of (5.5) only in the extremely small neighbour-
hood of point ¢ = 1. Such behaviour of f(f) has required the above mentioned
refinement of the step of integration near ¢ = 1.

6. Numerical results of solving the wedge entry problem

The numerical computations have been done for the complete wedge angles
20, = 0-036°, 0-36°, 3-6°, 6°,18°, 60° and 120° (¢ = 0-0001, 0-001, 0-01, &, 0-05,
%)

The curves f(t), which are the solution of (4.25) for angles & = 4, L and }, are
presented in figure 8. All these curves have very small ordinates at the large
interval adjoining zero and sharply increase immediately near the point t = 1
(the last points of the curves at ¢ = 1 are denoted in figure 8 by heavy points).
The curves f(t) for & < 4 practically coincide in the figure with the axis of
abscissas and the straight line parallel to the axis of ordinates and passing through
the point ¢ = 1.
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With the help of obtained functions f(¢) the free surface curves have been
computed from the formulae (4.27)—(4.30). For the total wedge angles 2 x 3°,
2 x 9°, and 2 x 30° these curves are presented in figure 9. It is seen here that with
increased wedge angle the free-surface disturbance, as would be expected, in-
creases and the splash adjoining the wedge increases lengthwise getting at the

1-0

f® -

— 08

—~ 06

L ! [
0 0-2 04 06 08 10
F1cure 8. Curves f(t) for @ = 0-05, § and 1.

same time thinner and thinner by its apex. With decreased angle a the maximum
height of the splash and the region of the free surface disturbance decrease.
The curve 7z = 75(x) of the maximum splash heights versus a is presented in
figure 10. Numerical values of magnitude # 5 for different angles a are presented
together with some other data of numerical computations in table 1. Figure 11
gives the dependence 75/(7et) on log a. From the analysis of this dependence we
may conclude that with & - 0-5 the height 5 seems to increase only up to some
limit value close to 7 = 3.

It is customary to assume that the linearized theory gives in general an infinite
splash height. However, Mackie (1962) has obtained from the linearized theory
on the basis of reasonable concepts the following approximate formula for the
splash height

7 _ 2y 1 (6.1)
ma m ma



Z. N. Dobrovol’skaya

822

S0

v snssoa T yserds oy Jo yBrey winurxew oy, ‘0] HEADLT

¥-0

€0

0

20

1-0

/

/

/

S0

01

S 1

QT

R4

af

.08 Pu® .6 ‘.8

= Op 10} (3)& = & seo®LINS G01) OY, '6 THADIT

4

1

0¢




Similarity flow of fluid with a free surface 823

Careful treatment of our numerical data gives for the small angles the asymptotic

dependence 1
75 _ 4In—+B, (6.2)
ma L
the constant 4 practically being equal to 2/7 ~ 0-637 and B = 0-82. It is seen
from here, that Mackie’s formula, theoretically rightly describing the dependence
75/(m) on & when & —> 0, gives a small relative error for the splash height 7 only
for the extraordinary small wedge angles.
@

0-002 0-006 0-02 0-06 0-2
0-001 0-004 0-01 0-04 01 0-5
45

40

35 \

ng/ma
i

30 \

N
N
25 AN
\\K
™
~
~
N
20 L
-30 —25 —-2:0 ~15 —-10 —0-5
log
Ficure 11. The curve 7g/(7e) versus log c.
P /( P )
x N B Ky/(Go) Pa o/ \tghon) a0

104 0-0019 0-100 1-02 1-00 1-00
10-3 0014 0-100 1-03 1-:00 1-01
10-2 0-099 0-094 1-08 1-04 1-10
= 0-153 0-089 1-11 1-06 1-17
25 0-39 0-072 1-31 1-2 1-5
1 1-13 0-036 23 2:0 31
1 9.0 0-011 12 5 6

TABLE 1.
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For comparing the obtained free surfaces with the data of linearized theory the
free surface™curves are presented in figure 12 in the form of the dependence

n/tg (ma) on £. The free-surface curve obtained from the linearized theory and
described by the formula

7:7_05 =71~T[ln (1+§)+2garctg%—2] (6.3)

is represented on the same figure. Qur numerical results, as it is seen from the
figure, approach the latter when « — 0.

075
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&= //
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/
050 7
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= /
/
{
I
025 t
\
\
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\\
. . \\\ -
Linearized theory \ T
\-\_
—y
[4] 1 2 3 4

£

Ficure 12. The curves 7/tg (ma) versus £ for different a.

At infinity the free-surface curves behave according to (4.31) as 7 & K, () £72.
The treatment of our numerical results shows that at sufficiently large £ the equa-
tion of the free surface can be represented in the form

L = gl a@] -2 [1-ea) (6.4

e
where €,(a) and €,(a) are the functions vanishing when « — 0. So, it follows from
the computations that, at small &, K,(a) = 1a that coincides with the result of the
linearized theory. Numerical values of the ratio K,/(}3«) are presented in table 1.

The free-surface behaviour near the point of contact with the wedge can be

characterized by the value 8 = f,/m, where §,is the angle between the free surface
and the wedge at the point of contact. The values £ for the different wedge angles
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have been computed with the help of corresponding values f(1) from the formula
(6.1). The curve f = () is represented in figure 13 (numerical data are given in
table 1). At small « this relationship can be expressed to high accuracy by the
formula g = 0-1 — 2.

0-10

0-08

gRN
0-02 \

~

I

0 0-1 0-2 03 0-4 0-5
24

Fiaure 13. The curve of the angle of contact 8 versus x.

It is seen from the dependence £ = f(c) that the angle of contact of free surface
with the wedge increases with decreased wedge angle. However, with « — 0 the
angle f, does not practically exceed 18°. On the other hand, if « = 0 then from
the statement of the problem it follows directly that f(f) = 0 and g, = i#. Thus,
the free surface inclination to the wedge face at the point of contact has a dis-
continuity at « = 0 asafunction of «. This is similar tothe problem of symmetrical
impact of a water wedge on a solid wall. Really, Cumberbatch’s (1960) approxi-
mate computations have shown that with the decrease of half-angle of a fluid
wedge from 22-5° to 11-25° the tip angle of the stream on a wall increased from
3° to 4-8°. Therefore, it is reasonable to suppose that with the fluid wedge angle
tending to zero the tip angle of the stream would approach some finite value
rather than zero.

The dependence 75 = yg(a) for the wedge entry (see figure 10) shows that
with & — 0 the maximum splash 55 tends to zero, and the region of disturbance
vanishes, i.e. the picture of flow in the case of a wedge entry remains in the large
continuous when « — 0 and at o = 0.

The discontinuity of function # = f(x) at & = 0is the consequence of the model
of ideal liquid and the similar result in the hydrodynamics of an ideal liquid is not
a single one. So, in the flow past the plate inclined to the flow direction at angle
a, the fluid velocity at the edges of the plate is infinite at any « =+ 0, although
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at o = 0 the fluid velocity at the edges is equal to the velocity at infinity. But the
picture of flow past the plate, as in the case of a wedge entry, changes on the
whole, continuously when & - 0 and at « = 0.

For estimating the accuracy of obtained numerical results we have checked
two conditions: the incompressibility of a fluid and the conservation of the arc
length along the free surface.t

In order to verify the incompressibility condition we have computed the area S
of the flow region above the axis of abscissas and then this area was compared
with the area A of that part of the wedge which was under the axis of abscissas.
For verifying the second condition mentioned above we have computed the
length 7 of the part of the free surface from the point of contact B to that point
of the free surface which ordinate could be practically taken as zero, and then the
value ! was compared with the abscissa £* of this point.

For the wedge angles 2, up to 18° (@ = 0-05) inclusive, the condition of con-
servation of the arc length (§*—1 = 0) has proved to be satisfied to within
|(§* —1) : 75| = 0-004 and the incompressibility condition to within

|S/A—1| = 0-01.

When 2a, > 18° the computations have been done with a smaller accuracy. So,
for o = } the computations have been done to within 0-01 and 0-03, respectively,
and for a = } (the wedge angle 2, = 120°) only an approximate estimation has
been obtained (therefore the curves for ¢, = 60° are drawn in the figures by dotted
tines). Increase of the accuracy of numerical results and their extension onto the
angles 2, > 120° do not induce great difficulties and demand only more machine
time.

By means of obtained curves f(¢) for different « the distribution of hydro-
dynamic pressure on the wedge face has been computed from the formulas (4.32)-
(4.38). As would be expected, the computations have shown that the pressures
on the wedge decreased with the decrease of the wedge angle. The dimensionless
pressure p = Ap/[(}pvd) at the wedge apex tends with o — 0 to a value close to 1,
and the pressures on the wedge face tend to zero. The value p, = 1 can be
obtained also from indirect theoretical considerations. For this purpose it is
sufficient to use the estimate (4.39) for the behaviour of the pressure in the
neighbourhood of the wedge apex and to substitute there the values of pressure
at any two points, calculated by the linearized theory (according to the linearized
theory the pressure at the wedge apex itself is infinite). Numerical values of the
dimensionless pressure p, at the wedge apex are presented for different « in
table 1.

As the pressures on the wedge for the small angles o are very small (every-
where except the neighbourhood of the apex), it is more convenient to compare
the pressure distribution curves for different wedge angles by considering the
dependence of p/tg o, on 5 rather than p on 3. Figure 14 presents the relations

T As has been shown by Wagner (1932), the distance (measured along free surface)
between two arbitrary fluid particles on the free surface remains constant in the similarity
flow under consideration.
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P[tg oty versus 7 for different o (5 = — 1 is the wedge apex). The pressure curve for
a = 0-0001 practically coincides with the curve given by the linearized theory:
P_ 1, 1=7 (6.5)

@ 7w 147
For a, > 3° the pressure distribution curves, as seen from the graphs, begin

quickly to deviate from the pressure curve of the linearized theory and for «,
close to 30° these curves have nothing in common with the results of the linearized
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Ficure 14, The curves of the distribution of the dimensionless pressure p
divided by tg «, along the wedge face for different angles «.

theory. The ordinates p/tg ¢, near the wedge apex (7 = — 1) become for the small
a, as would be expected, very large (but finite), and therefore the values
pltga,aty = —1are notincluded in the figure. As seen from figure 14 the pressure
at the upper part of the splash proves to be practically equal to zero (the ends of
the splash jets are denoted on the figure by heavy points).

The pressure distribution curve for o, = 60° shows that for the large angles «,
the maximum of the pressure displaces from the wedge apex to some point on the
face of the wedge, this point being situated for the large ., above the level of the
initially undisturbed free surface. This qualitative result coincides with the

Borg (1959) approximate computations.
With the help of obtained pressure curves we have computed the value of the

£
P=2fBA%%

1
0 zPY%
acting on the entering wedge (both its faces). The actual drag force P* is connected
with the value P by the obvious relation: P* = pv}tP. The dependence P/tg%a,

dimensionless total drag force
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on ¢ is represented in figure 15. Numerical values of the ratio of (P/tg%a,) to the
magnitude (P/tg?a,),, -0 Obtained as the limit when a, > 0, are presented in
table 1. The analysis of obtained data makes it possible to represent the force P
for small wedge angles (¢ < 0, 1) in the form

P =1-765tg2a,+5-8 tgd (6.6)

where 1:765 is the magnitude given by the linearized theory.

10

4

0 0-1 02 03 0-4 0-5
o

Ficure 15. The dimensionless drag force P (divided by tg?a,)
acting onto the entering wedge, versus a.

The presented results of numerical calculations for the wedge-water entry
problem demonstrate the efficiency and practical applicability of the general
method when using modern digitial computers.

The theoretical part of this work has been done at the former Institute of
Mechanics of the USSR Academy of Sciences, in the Department of Prof. L. A.
Galin, member of the Academy, to whom the author is grateful for many useful
discussions. The development of the numerical methods of solving the wedge
problem and all the calculations have been carried out by the author at the Com-
puting Centre of the Academy.

The author is greatly indebted to Prof. G.K.Mikhailov for his constant
attention to this work and many valuable ideas.
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