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On some problems of similarity flow of 
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The paper presents the method of solving a class of two-dimensional problems 
of the similarity flow of an incompressible fluid with a free surface. The fluid is 
assumed to be non-viscous and weightless. We consider two-dimensional irrota- 
tional similarity flows with dimensionless hydrodynamic characteristics depend- 
ing only on the ratios x/v,t, y/vot, where x, y are Cartesian co-ordinates, t is time 
and v,, is a constant of the velocity dimension. 

The proposed method is based upon using the function introduced by Wagner 
(1932) and can be applied to the problems where the flow region is bounded by 
free surfaces and uniformly moving (or fixed) rectilinear impermeable boundaries. 
Introduction of Wagner’s function makes it possible to reduce each of the prob- 
lems under consideration to a non-linear singular integral equation for the real 
function. 

The method is illustrated by solving the classical problem of the uniform 
symmetrical entry of a wedge into a half-plane of a fluid. 

1. Introduction 
Hydrodynamic problems of flow with free surfaces (in particular, the water- 

entry problems) are essentially non-linear. The difficulty in solving these problems 
is that of satisfying the non-linear boundary conditions on the free surface, which 
is not a stream-surface in unsteady motion. 

The problems under consideration have been studied by many authors. The 
theoretical analysis of similarity flows of an incompressible fluid was first pre- 
sented by Wagner (1932) who obtained, in particular, an approximate solution 
of the wedge water-entry problem. 

Thereafter this problem was investigated by Pierson (1950), Garabedian (1953), 
Borg (1957), Moiseev et al. (1959) and others. The similar problem of the impact 
of a water wedge on a plate was studied by Cumberbatch (1960). But until now 
no exact solutions (analytical or numerical) of these problems have been 
obtained . 

The complete solution was obtained only for the linearized wedge water-entry 
problem. For the case of a compressible fluid it was given by Grigoryan (1956) and 
Sagomonyan (1956); the results for an incompressible fluid were first written 
explicitly by Mackie (1962). 

In  $ 2  of the present paper the definition of Wagner’s function and its main 



806 2. N .  Dobrovol'skaya 

properties are recalled. In  $ 3  we give the method of Wagner's function for 
reducing the problems under examination to a singular integral equation. In  3 4 
the integral equation is derived for the problem of the uniform symmetrical entry 
of a wedge into a half-plane of a fluid. In  $5 we show the applicability of the 
successive-iterations method for solving the integral equation obtained and give 
tfhe scheme of numerical integration of this equation. 

Results of the numerical solution of the wedge problem are given in $6.  
Presented and analyzed here are the free surfaces for different wedge angles and 
the curves of the pressure distribution along the wedge; in particular, the free- 
surface behaviour nea.r the wedge is investigated. The obt'ained numerical solu- 
tion is compared with the analytical solution of the linearized problem. 

2. Wagner's function 
Let 2, y be fixed Cartesian co-ordinates in the plane of flow (which we sha.11 

call the 'physical plane'), t ,  time and 6 = z/(vot), 7 = y/(wot), the dimensionless 
similarity variables (vo = const.). In  the (6,  v)-plane a stationary region corre- 
sponds to the physical flow region varying with time. But the part of the boundary 
of the flow region, corresponding to the free surface, is unknown in advance in 
both planes. 

The velocity potential #(z, y, t )  and the stream-function 3lr(x, y, t )  of the flows 
under consideration have the form 

#@, y, t )  = v ; t w ,  71, $(z, y, t )  = v;ty(S> 7),  

where @([, 7) and Y(g, 7) are harmonic functions of & and q. 

U(Z, t )  = #(z, y, t )  + M z ,  y, t )  

is the complex velocity potential in the z-plane (z = x+iy) .  Let us introduce 
function 

The function V'(6) is connected to the complex velocity Ui(z ,  t )  by the obvious 
relation U&, t )  = ,uo V'(<). 
Therefore, it is natural to call the function V'(5)  the complex velocity and V(5) 
the complex velocity potential in the [-plane. 

Wagner's function h can be determined as followsf 

( 2 . 2 )  

The purpose of introducing Wagner's function is that, in the plane of this 
function, the free surface of a fluid is always represented by a segment of a straight 

t Wagner introduced the function h (for the wedge water-entry problem) in a slightly 
different wag, namely 

where z = x + iy  and x, y arc the Cartesian co-ordinates moving uniformly with the wedge. 
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line (or by a broken line). We shall demonstrate below that for the flows under 
consideration the flow region bounded by the free surfaces and the uniformly 
moving (or fixed) rectilinear impermeable boundaries, is always known in the 
plane of Wagner's function. For this purpose we represent the integrand expres- 
sion of formula (2.2) in the form 

and investigate first of all the behaviour of function (2.3) on the free surface: 
following Wagner's presentation. 

In the similarity flow with the variables 

the following relation holds for the velocity vector U(x, y ,  t )  

U(x, y , t )  = vo% - - . (;t,:t) (2.5) 

After differentiating the left- and right-hand sides of (2.5) with respect to t, 
we obtain 

Let us consider (2.6) on the free surface when t is fixed. With t fixed, the variables 
x, y on the free surface are single-valued functions of the arc length s measured 
along the free surface. In this case (2.6) reduces to the form 

(2.7) 
d u b ,  y ,  t )  - - - W x ,  Y ,  t )  (--+--). ds x as Y 

at as a x t  a y t  

The expression in the brackets in (2.7) is a scalar function, and hence the vector 
all(x, y, t)/& has the same direction as the acceleration vector dU(x, y, t ) / d t  at 
any point of the free surface. Pressure on the free surface being constant, the 
pressure gradient on the free surface is normal to the latter at  any of its points. 
Therefore, according to the Euler equations, the acceleration dU/dt  of fluid 
particles lying on the free surface is also normal to the free surface. Taking this 
into account, it follows from (2.7) that the increment of the velocity vector along 
the free-surface element is normal to the free surface at any of its points. 

The same fundamental fact can be re-proved in a more formal way. In  fact, 
the total differential of the function U ( x ,  y, t )  has the form 

Introducing the similarity variables (2.4) and taking into account (2.5), the rela- 
tion (2.8) can be reduced without difficulty to the form 
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or, as might be expected, 
dU(x, y, t )  = v o d m  7).  (2.10) 

Formula (2.10) shows that in the flows under consideration the differential of 
function U(x, y, t )  with respect to variables x, y, t coincides (to within the constant 
factor vo) with the differential of function @([, 7) with respect to variables (, 7. 
Let us fix variable t and consider (2.10) on the free surface. The vector dU(z, y, t ) ,  
having the same direction as the acceleration vector, is normal to the free surface. 
Then, according to (2.10) ,the direction of the normal to the free surface in the 
(6, ?])-plane is also the direction of the vector ti%([, 7) which is the increment of 
the velocity vector along the free-surface element.? 

This fact makes it possible to construct the free-surface image in the plane of 
Wagner’s function. 

Therefore, let be a point of the free surface 7 = q([ )  and let the contour of 
integration in formula (2.2) include the part of the free surface from infinity$ 
to 5 (the path of integration is chosen so that the flow region would be from the 
left). Now let us investigate the behaviour of the argument of function 

&V’(C) dC) 
___ 

on the free surface. As shown above, the increment dV‘(c)  of the velocity vector 
along the free-surface element is normal to it and can be directed along t h e  out- 
ward or inward normal. 

Let us first consider the case when (under the chosen path of integration) the 
vector dV’(C) is in the outwardnormal direction to the free surface. The argument 
of vector d< at a point MI on the free surface BC is denoted by 8 (figure 1). Then 
argdV’(C) = 8 - 477 as dC and d V’(5) are mutually orthogonal, and hence 

__ 

~ - 

argdV’(5) = 8r -O 
~ 

as vectors dV’(5)  and dV’(c) are conjugate. Taking this into account, we obtain 

arg J(d V’(5) dg) = $[arg d V’(5) + arg dg] = $77. (2.11) 

Condition (2.11) is satisfied at any point of the free surface. Therefore the incre- 
ment of Wagner’s function h(c) has the argument $7r on the considered part of 
the free surface. 

t The increment of the velocity vector is not orthogonal to the free surface in the case 
of flow with the similarity law of the form 

X Y u(z, y ,  t )  = ct7%(5, q ) ,  where 6 = - q = clr+l. CtY+l’ 
In  this case the relations 

dU(z ,  y, t )  = 7ctY-l B(6, q )  dt+ctr d B ( 6 ,  r )  
hold, instead of the conditions (2.7) and (2.10) 

of the flow region in the plane of Wagner’s function before solving the problem. 

infinity of the 5-plane. 

As will be seen from the following, the similarity of this form excludes the construction 

$ In the similarity problems under consideration, the free surface reaches the point a t  
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In a similar way it can be shown that the argument of increments of Wagner’s 
function is equal to --in on those parts of the free surface where the vector 
d V‘(5) is in the inward normal direction to the free surface.t 

Thus, the free-surface image in the plane of Wagner’s function is in the 
general case a broken line, composed of the rectilinear segments inclined to the 
axis of abscissas at  the angle &r or - $n. If the vector dV’ (5 )  on the free surface 
does not change its direction from outward normal to the inward one (or con- 
versely), then the free surface is represented in the plane of Wagner’s function 
simply by a rectilinear segment making the angle in or -4. with the axis of 
abscissas. 

~ 

- 

FIGURE 1. The directions of vectors dV’(5) and d{ on the free surface CB, and rectilinear 
impermeable boundaries BA and AC (illustration to the formula by Wagner (1932)). 

We investigate now the behaviour of the function h(c)  on the rectilinear seg- 
ment AB (figure l), being the image of a uniformly moving impermeable recti- 
linear boundary. According to the impermeability condition all the fluid particles 
on the impermeable contour have the same __ normal (to the boundary) velocity. 
Therefore, the velocity-vector increment d V’(5) at a point M, on the impermeable 
rectilinear boundary is directed along the boundary, being in the same __ direction 
as the vector d& or opposite to the latter. In  the first case argdV’(5) = argdc 
whence it follows that argd V’(<) = -argdc, and then the function J(dV’( (S)d[)  
has the argument equal to zero (or f nn) on the impermeable boundary. In  the 
case when dc and dV’(g) have opposite directions, it can easily be shown that 

t In  general, the argument of increments of function h(5) may differ from the indicated 
values 2 an by 2nn, where the integer n is determined by the frame of reference and the 
flow kinematics on the whole. 

__ 
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arg 2/(dV’(g)d<) = &r (or 5 k m), the sign depending on the direction of 
path along the boundary. 

If the impermeable boundary AC (figure 1) is stationary in the ( x ,  y)-plane, 
the behaviour of the argument of function J(d V(5) dg) is the same as in the case 
just considered. Thus, the image of the uniformly moving or stationary recti- 
linear impermeable boundary in the plane of Wagner’s function is a rectilinear 
segment parallel or orthogonal to the axis of abscissas. 

C 

FIGURE 2. The flow region in the physical plane 2, y for the unsymmetrical 
entry of a wedge into a fluid. 

C 
FIGURE 3. The flow region in the plane of Wagner’s function for the symmetrical and 
unsymmetrical entry of a wedge into a fluid, and for the impact of a water wedge on a wall. 

Below we consider only such problems in which the flow region is bounded by 
the free surfaces and uniformly moving (or stationary) impermeable rectilinear 
boundaries. For the problems of this class, as seen from the above, the flow 
region is always represented in the plane of Wagner’s function by a polygon. 
For example, in the case of symmetrical solid-wedge entry into a half-plane of 
a fluid (or into a fluid wedge) the flow region is represented in the plane of Wagner’s 
function by a rectangular isosceles triangle. In the case of uiisymmetrical wedge 
entry the flow region in the plane of Wagner’s function is of the same form as in 
the symmetrical case (figures 2 and 3). 

The method of Wagner’s function can be also applied to solve the problem 
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of the impact of a water wedge on a wall (figure 4), as in this case the flow region 
in the plane of Wagner’s function is known and represented by the same triangle 
as in the wedge water-entry problem. 

In the problem of the uniform spreading of a constant pressure wave over the 
free surface being initially non-perturbed, the flow region in the plane of Wagner’s 
function is represented by a square. 

I 
1 /’ 

./ 

3. Method of Wagner’s function for reducing the problems under 
consideration to a non-linear singular integral equation 

The essence of the method consists in the following. The problem of the 
similarity potential flow in the region bounded by the free surface and imperme- 
able rectilinear boundaries can be formulated as the problem of determination, 
in the flow region (in the similarity (c, q)-plane), of the velocity potential @(&, r ) ,  
a harmonic function, satisfying the constant-pressure condition and the kine- 
matic condition on the free surface 7 = ~ ( c ) ,  and the impermeability conditions 
on the solid boundaries. 

Let V(6)  = @(c, 7) + iY([,r) be the complex velocity potential in the <-plane 
(6 = &+ i y ) .  We introduce the auxiliary parametric variable w = u + iv and con- 
sider the analytical function < = <(w) mapping conformally the upper half-plane 
Im w > 0 onto the flow region in the 6-plane in such a way that the free surface 
of a fluid is represented by a segment L of the real axis of the w-plane and the 
rectilinear impermeable boundaries by the remaining part of the real axis which 
we denote by I (both L and I may contain a point at  infinity). 

Introduction of function c(w) makes it possible to reduce the problem to the 
determination of two analytical functions V(w) and 6(w) in the upper half-plane 
Im w > 0 using the following boundary conditions: functions V(u)  and c(u) have 
to satisfy the constant pressure and kinematic conditions on segment L, and the 
impermeability and obvious geometric conditions on I ;  the latter follows from 
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the fact that the argument of the function {‘(u) on I is known and equal to the 
constant or piecewise constant function. Thus, both on L and 1 there are two 
conditions for the determination of two functions V(w) and {(w) analytical in the 
upper half-plane. 

Let us introduce Wagner’s function h(g).  In  the plane of this function the flow 
region is represented by a polygon. By means of the Schwarz-Christoffel formula 
we can write the function h = h(w) which maps conformally the upper half-plane 
Imw > 0 onto the interior of the polygon in the h-plane. Elimination of the 
variable h from the expression h = h(w) and relation (2.2) gives an explicit ex- 
pression for the complex velocity V’(w) in terms of the mapping function ~Jw). 
The expression of function V‘(w) in terms of c(w) gives a possibility of excluding 
an unknown function V(w) from the obtained boundary-value problem for two 
functions V(w) and [(w)) and the problem is thus reduced to the determination 
of function {(w), analytical in the upper half-plane Im w > 0,  which has to satisfy 
the kinematic condition on segment L and the geometric condition on 1. The 
second condition on each of these intervals (the constant-pressure condition on L 
and the impermeability condition on 1 )  has already been used for the determina- 
tion of the flow region in the plane of Wagner’s function. 

Introduce the real function f(u) (u. E L)  representing the argument of c(u) 
on L. Then, remembering that the argument of function {’(u) on 1 is known, we 
can write (by means of the Schwarz integral) the representation of the mapping 
function {(w) in terms of the real functionf(u). The substitution of {(w) expressed 
in terms off(u) into the kinematic condition on the interval L gives a non-linear 
singular integral equation for the determination of f(u). Function f(u) being 
determined, the hydrodynamic problem can be considered as solved since the 
mapping function {(w) and the complex velocity V’(w) at  any point of the flow 
region are expressed in terms of the function f(u) by quadratures. 

4. Symmetrical entry of a wedge 
We consider uniform symmetrical entry of a wedge into a half-plane of a fluid 

which is assumed to be incompressible, non-viscous and weightless, the wedge 
angle 2ao being arbitrary (a, < &). 

Let x, y be Cartesian co-ordinates with the origin at  the point of intersection 
of the unperturbed free surface with the axis of symmetry (the y-axis is directed 
opposite to the wedge movement along the axis of symmetry). Because of the 
symmetry only the half x 2 0 of the flow region is considered. 

As the flow under consideration is the similarity flow, the velocity potential 

(4.1) 
$(x, y, t )  has the form 

where 6 = x/vot, 7 = y/vot (vo being the velocity of the wedge), and @(,$)T) is 
a harmonic function of E and 7 in the flow region CBAC (figure 5) .On the boundary 
of the flow region, the function a((, 7) has to satisfy the following conditions: on 
the free surface 7 = ~ ( g ) ,  the constant pressure condition 

$% Y, t )  = v w %  71, 
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and the kinematic condition 

on the wedge and axis of symmetry, the impermeability conditions 

a@ a@ 
86 ar - cos a. - - sin a, = sin a. on AB, 

a@ 
85 
- = 0 on AC. 

813 

The free surface at  infinity has to approach the unperturbed free surface 
asymptotically. 

FIGURE 5. 
C 1 

The half of the flow region CBAC in the similarity plane 
for the symmetrical entry of a wedge into a fluid. 

6 = E+iq 

The wedge-entry problem can be reduced, first, to the boundary-value problem 
for two functions analytical in the upper half-plane. Therefore, let 

V(5)  = @ ( t 7  r )  + iwt, 7) 
be the complex velocity potential in the [-plane (5  = 6 + ir). We introduce 
w = u + i v  and consider an analytical function [ = [(w) which maps conformally 
the upper half-plane Im w > 0 onto the flow region in the [-plane in such a way 
that the points < = cB (point of contact), [ A  = - i  (wedge apex) and 5 = co 
correspond to w = 0, w = 1 and w = 00 respectively (figure 6). In so doing the free 
surface of a fluid will be represented by the real negative semi-axis of the w-plane. 

Conditions (4.2) and (4.3) take the form 

[’(u) y‘(u) Re V(u) -Re [c(u) c(u) V’(u)] + &V’(u) V’(u) = 0 
- - - 

( - co < u Q O ) ,  
(4.6) 

Re[iV’(u)] = Re[iy‘(u)[(u)] (-a < u < 0). (4.7) 

On segment 0 < u < 1 twozconditions have to be satisfied: condition (4.4) which 
can be reduced to the form 

(4.8) Re [iV’(u)] = I[’(u)l sina, (0 < u ,< l), 
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and the obvious geometrical condition 

argc’(u) = -(&r+a0) (0  6 u 6 1) .  

When u 3 1, we have condition (4.5) taking the form 

Re[iB‘(u)] = 0 (1 6 ZL < a), 
and geometrical condition 

argc’(u) = --in (1 < u < CO). 

(4.9) 

(4.10) 

(4.11) 

c B I  A c 

FIGURE 6. The image of the flow region GBAC in the w-plane 
for the symmetrical entry of a wedge. 

The problem is thus reduced to the determination of two functions V ( w )  and 
c(w), analytical in the upper half-plane, satisfying boundary conditions (4.6)- 
(4.11) on the real axis. 

We reduce the obtained boundary-value problem to the determination of the 
function <(w). To this end, we introduce Wagner’s function 

(4.12) 

In  the plane of this function the flow region CBAC is represented by the interior 
of the isosceles right triangle (with the size unknown in advance) depicted in 
figure 7. The function h(w), conformally mapping the upper half-plane onto the 
interior of the triangle in the h-plane with the correspondence of the angular 
points indicated in figures G and 7 ,  has the form 

h = ic, w-%(w- l)-adw (Imc, = 0). (4.13) 

Eliminating the variable h from expressions (4.12) and (4.13) and taking into 
account that V’(cB) = cB (see Dobrovol’skaya 1965), we obtain 

s,” 

1 W 

V’(w) = t 6 ‘ (w) -c ; cyw) j  w-qw- 1)-1--- <’(W) 
0 

(4.14) 

Formula (4.14) gives an explicit representation of the complex velocity in terms 
of the derivative of the function <(w) everywhere in the upper half-plane 
Imw > 0. It should be noted that representation (4.14), obtained with the help 
of Wagner’s function, is the consequence of conditions (4.6), (4.8) and (4.10) 
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since these conditions have been used for the deterinination of the flow region 
in the plane of Wagner’s function. Eliminating function V’(u) from the kinematic 
condition (4.7) with the help of (4.14)’ we obtain the following boundary con- 
dition for function 6(u) on the real negative semi-axis u < 0 

Re(i{’(u)/: [b’(u)+ciu-%(u- 1)-l- ]au] = 0.  
5‘(u) 

(4.15) 

On the positive semi-axis, the function {(u) has to satisfy condition (4.9) for 
0 < u < 1 and (4.11) for 1 < u < +co. 

c 

FIGURE 7. The flow region CBAC in the plane of Wagner’s function 
for the symmetrical entry of a wedge. 

The problem is thus reduced to the determination of the function <(w), ana- 
lytical in the upper half-plane Imw > 0 from the boundary conditions (4.15), 
(4.9) and (4.11) on the real axis. 

The boundary-value problem for {(w) will be reduced below to the integral 
equation for a real function f(u) connected with g(u),  when - co < u < 0, by 

the relation argr(u)  = -n[f(u)+l] (-a < u 6 0) .  (4.16) 
The function f(u) has to satisfy the condition 

f(u)+O when u-f -a, (4.17) 
as the free surface has to approach asymptotically the unperturbed free surface 
at  long distances from the wedge. Using (4.16) and taking into account that the 
argument of function 6‘(u) for 0 < u < +a is known from the boundary con- 
ditions (4.9) and (4.11), we canwrite (with the help of the Schwarz integral for 
the upper half-plane) the representation of mapping function g(w) in terms of 
the real function f (u) .  This representation has the form 

(c > 0, a! = ao/n). (4.18) 
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Using the Sokhotsky-Plemelj formula for the limit values of the Cauchy-type 
integral of expression (4.18)) we can write the limit values of <'(w) (determined by 
(4.18)) when variable w tends to the real value u from the upper half-plane 
Im w > 0. The substitution of [ '(u) expressed in terms of f (u)  into the kinematic 
condition (4.15) gives the following non-linear singular integral equation for the 
determination of the function f(u)t 

It is seen from (4.14), (4.18) and (4.19) that the solution of the problem contains 
two real parameters (c and co) and a complex parameter f;n; the real and imaginary 
parts of the latter are connected to each other by the obvious dependence 

6B = (l+rB)tgaO* (4.20) 

Thus, the solution contains real parameters c, co and vB for which determina- 

<(1) = -i, (4.21) 
tion there are three conditions: 

Im[(u)-+O when u - t - c ~ ,  
V'(<) = i at 5 = -i. 

(4.22) 

(4.23) 

Using these conditions, we find that the value C;/C~ from integral equation (4.19) 
is determined by the following functional 

IO1 u-++a(l-  u)-a exp [ - j O fo dull du !L - m U 1 - U  

u-l-a (1 - u)-l+a exp[JU -a f o d u l ] d u '  ul-u 
(4.24) 

For the numerical integration of (4.19), it is more convenient to introduce 
positive variables of integration t = (1 -u)-l and r = (1 -ul)-l which vary 
within 0 < t < 1 and 0 < r < 1. Then, (4.19) is transformed to 

(the notation I ( t )  is introduced for brevity of the subsequent discussion). Intro- 
ducing variable r = (1 + u ) - I  into expression (4.24), we obtain 

t A copy of the author's derivation of this equation, which is taken from Dobrovol'skaya 
(1965), will be sent to any interested reader on request to the Editor. 
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Thus, the wedge water-entry problem has been reduced to the determination 
of the solution of the non-linear singular integral equation (4.25) for the real 
function f ( t )  . 

The functionf(t) at any point t E [0,1] is, by definition (to within the constant 
factor and sum), the angle of inclination of the free surface to the [-axis at the 
corresponding point of the free surface, and because of this, f ( t )  is bounded on the 
whole segment [0,1] including its ends (t  = 1 corresponds to the point of contact 
of the free surface with the wedge face and t = 0 to the infinite point of the free 
surface). 

If the solution of (4.25) is found, the mapping function ((w) can be determined 
in terms of function f by expression (4.18) and the complex velocity a t  any point 
of the flow region by formula (4.14). 

The free surface of a fluid is determined in terms of f(t) by the following 
parametric equations obtained from the formula (4.18) : 

where the constants c and rB have the form 

It should be noted that the asymptotic behaviour of the free surface at infinity 
can be obtained from equations (4.27), (4.28). Really, the analysis of (4.25) near 
the point t = 0 shows that f ( t )  = O(t3) when t 3 0. This estimate together with 
(4.27), (4.28) considered at t -+ 0, gives an asymptotic of function r([)  at [ + 00 

which, as in the linearized theory of a thin wedge (Mackie 1962), has the form 

r = K1k2, (4.31) 
where Kl = K,(a). 

The pressure distribution on the wedge face can be obtained from the Cauchy- 
Lagrange integral 

- 
2Re [W)  - !w ~ ' ( C ) l g = g o l +  [V ' ( ( )  J7'(5)15=5(d+P(r) = 0 (Q T G I), (4.32) 

where p ( r )  = Ap/(&ppv$) is the dimensionless pressure on the wedge face, 

AP = P-Po 
(po is the pressure on the free surface); point r = Q corresponding to the wedge 
apex CA = - i  and r = 1 to the point of contact CB. Correspondence between the 
points of segment [h < r 6 11 and the co-ordinates [, 7 on the wetted wedge face 
is given by formula 

( ( r )  = [ ( r ) + i r ( r )  = [ ~ B - ~ s i n a , H o ( r ) ] + i [ ~ B - c c o s a , H o ( r ) ] ,  (4.33) 
52 Fluid Mech. 36 
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where 

2 

[V'(C)v'(fl)]s=s~r) = [EB-2sinaoGo(r) , (4.35) 

where 

d-r] dr ; (4.36) [ 10' 7[7(2 - (l/r)} - 11 
Go(?-) = Irl (1 - r)-l-a (2r - l)-l+a 

(4.38) 

Given the above formulas for the pressure on the wedge face i t  is possible to 
estimate the behaviour of the pressure curve in the vicinity of the wedge apex. 
For this purpose it is sufficient to differentiate the Cauchy-Lagrange equation 
(4.32) with respect to r, to take into account the singularities at r = g of the  
improper integrals H,(r) and G,(r) and to use formula (4.33) connecting variable r 
with the similarity variables [ and '1 on the wedge. As a result we have 

p = P A  - li;, p4(1-a), (4.39) 

where p A  is the pressure at  the wedge apex and K ,  = K2(a) .  

5. Method of numerical integration of the basic integral equation of 
the problem 

For the numerical integration of (4.25) the method of successive iterations 
has been used. Below we dwell on some peculiarities of realization of this method 
for the given equation. 

Point t = 1, as seen from the equation, is the singular point of the integrand 
of the outer integral I(t) .  Integral I ( t )  has to be convergent at  this point since 
functioiif(t) has to be bounded, by definition, on segment [0,1] including its ends. 
Let us analyze the behaviour of the integrand of integral I ( t )  near the point t = 1.  

We denote by Po the angle between the wedge face and free surface at the point 
of contact B. Then we have 

f (1)  = g+a-/3 (/3 = $ 2  0) .  (5.1) 
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Now the Cauchy-type integral in (4.25) has the following representation near 
the point t = 1 

The following estimates for the functions standing under the integrals in (4.25) 
near the point t = 1 (t < 1) can be obtained 

Thus we find from (4.25) that f'(t) behaves near t = 1 as (1 -t)--i-W. Hence 
integral I(t)  at the point t = 1 is an ordinary improper integral which converges 
if and only if the following condition is satisfied: 

p < 4- (5.2) 

Thus, the magnitude Po of the angle between the free surface and the wedge face 
at  the point of contact cannot exceed 8. for any wedge angle. 

From conditions (5.1) and (5.2) it follows in turn that, if we use the iterations 
method, then for existence of every successive iteration fn+l it  is necessary that 
all the previous iterations would satisfy the condition 

&+a <fk(l) < g+a (k=0,1 ,  ..., n)  (5.3) 

which is the condition of convergence of integral I ( t )  at the point t = 1.  
It can be shown that condition (5.3) gives a possibility of constructing as many 

iterations as desired. Therefore, let us take as zero approximation a one-para- 
meter family Q of suitable (monotone, vanishing at  t = 0 and providing con- 
vergence of I ( t )  at t = 0) curvesf,(t) (0 < t < 1) with parameter F, E fo( 1) belong- 
ing to segment R = [$+a, ++a]. Substituting into (4.25) the function 
fo(t) E !2 with Fo = i + a  we obtain that Fl = fl(l) = 0. If F, = &+a, it follows 
from (4.25) that Fl = co. Thus, choosing as zero approximations the curves with 
Fo E R, we obtain the first iterations with 0 < Pl < 00, and then there neces- 
sarily exists a smaller segment R(') (lying entirely in R) such that the values 
Po E R(1) will correspond to Pl E R and 0 < Fz < 00. Carrying out the same 
reasoning for the family of functions fl(t) with Fl E R and then continuing this 
process further, we can obtain an unlimited sequence of segments R(n) con- 
tained in each other such that, at Po E R(n), the above process makes it possible 
to construct at least (n + 1) iterations; however, the following iterations, be- 
ginning with a certain number, will not in general exist; in fact, it  is sufficient 
that should be outside the segment R and under this condition the (n + 2)-th 
iteration would not exist. 

The sequence of continuously decreasing segments R("), when n + 00, deter- 
mines (at least) one point F;, by approaching which we can obtain as many 
iterations of (4.25) as desired. 

52-2 
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It is clear from the above that with this method of constructing the successive 
iterations the process of iterations for (4.25) will not converge in the usual sense 
and can prove to be only asymptotically convergent. The asymptotic con- 
vergence in this case is understood in the following sense: the number of 'con- 
vergent' iterations of a given equation can be as great as desired but the following 
iterations generally speaking, do not exist. 

For the numerical integration of (4.25) we have taken as zero approximation 
fa( t ) (O 6 t < 1) the family of monotone increasing functions having, near the 
ends of the integration interval, the following representation (arising from the 
elementary analysis of (4.25)) 

f ( t )  = O(t8) when t -+ 0, (5.4) 
f ( t )  = Fo-y(l-t)*-2~ when t +  1 (0 < /? < a). (5 .5 )  

The value Fo = fo(  1) has been taken as free parameter. 
All the integrals in (4.25) have been computed with the variable step of 

integration decreasing near t = 1, the number of steps having been chosen in 
such a way that the distance between the last point of integration and 1 is equal 
to some small value e which choice was determined by the necessary accuracy 
of calculation. The computation has shown that the value E is of the order of 
10-12-10-1s (depending on the value of a)  decreasing with decreasing a. The 
refinement of the step of integration to such a small magnitude is due to the very 
special behaviour of the integrands of (4.25) near t = 1. The partial sums of the 
integrals near the ends t = 0 and t = 1 have been computed with the help of 
obtained estimations of the corresponding integrands near these points. 

As would be expected, the process of iterations for (4.25) has proved to be 
asymptotically convergent. The computation has shown that for obtaining the 
solution f ( t )  to the practically required precision it is sufficient to construct only 
10-12 iterations, P 5  mean iterations having proved to be almost coinciding. 

The computation has confirmed to high accuracy the character of behaviour 
of the function f ( t )  near t = 1, described by formula (5 .5 ) .  Howex-er, the curve 
f ( t )  can be represented in the form of (5 .5 )  only in the extremely small neighbour- 
hood of point t = 1. Such behaviour of f ( t )  has required the above mentioned 
refinement of the step of integration near t = 1. 

6. Numerical results of solving the wedge entry problem 
The numerical computations have been done for the complete wedge angles 

2a0 = 0.036"' 0.36", 3.6"' 6", 18", 60" and 120" (a = 0.0001, 0.001, 0.01, &, 0.05, 

The curvesf(t), which are the solution of (4.25) for angles a = J5, Q and 8 ,  are 
presented in figure 8. All these curves have very small ordinates at  the large 
interval adjoining zero and sharply increase immediately near the point t = 1 
(the last points of the curves at  t = 1 are denoted in figure 8 by heavy points). 
The curves f ( t )  for 05 < $G practically coincide in the figure with the axis of 
abscissas and the straight line parallel to the axis of ordinates and passing through 
the point t = 1. 

+, 3) .  
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With the help of obtained functions f ( t )  the free surface curves have been 
computed from the formulae (4.27)-(4.30). For the total wedge angles 2 x 3") 
2 x 9") and 2 x 30" these curves are presented in figure 9. It is seen here that with 
increased wedge angle the free-surface disturbance, as would be expected, in- 
creases and the splash adjoining the wedge increases lengthwise getting at  the 

0 0.2 0.4 0.6 0.8 1.0 

FIGURE 8. Curvesf(t) for a = 0.05, + and +. 

same time thinner and thinner by its apex. With decreased angle a the maximum 
height of the splash and the region of the free surface disturbance decrease. 
The curve vB = v,(a) of the maximum splash heights versus a is presented in 
figure 10. Numerical values of magnitude 7, for different angles a are presented 
together with some other data of numerical computations in table 1. Figure 11 
gives the dependence qS/(ma) on log a. From the analysis of this dependence we 
may conclude that with a -+ 0.5 the height 7, seems to increase only up to some 
limit value close to 7, w 3. 

It is customary to assume that the linearized theory gives in general an infinite 
splash height. However, Mackie (1962) has obtained from the linearized theory 
on the basis of reasonable concepts the following approximate formula for the 
splash height 2 1  

(6.1) 32 = -1n-. 
ma m 7ra 
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Careful treatment of our numerical data gives for the small angles the asymptotic 
dependence 1 

@ = Aln-++, na nu 

the coiistant A practically being equal to 21" M 0-637 and B M 0 - 8 2 .  It is seen 
from here, that Mackie's formula, theoretically rightly describing the dependence 
vs/(na) on a when a -+ 0, gives a small relative error for the splash height rB only 
for the extraordinary small wedge angles. 

U 

0.002 0.006 0.02 0.06 0.2 
0.001 0.004 0.01 0.04 0.5 

I 

0.1 

-3.0 -2.5 -2.0 - 1.5 - 1.0 -0.5 

log a 

FIGURE 11. The curve vs/(7ru) versus log a. 

U 

10-4  
10-3 
10-2 
1 

6 0  

1 
2 0  

1 
6 
1 
3 

- 
- 
- 
~ 

Tn 
0.0019 
0.014 
0.099 
0.153 
0.39 
1.13 
2.0 

P K J G 4  
0.100 1.02 
0.100 1.03 
0.094 1.08 
0.089 1.11 
0.072 1.31 
0.036 2.3 
0.011 12 

TABLE 1. 

P A  

1.00 
1.00 
1.04 
1-08 
1.2 
2.0 
5 

1.00 
1.01 
1.10 
1.17 
1.5 
3.1 
6 
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For comparing the obtained free surfaces with the data of linearized theory the 
free surface”curves are presented in figure 12 in the form of the dependence 
r/tg (na) on 6. The free-surface curve obtained from the linearized theory and 
described by the formula 

is represented on the same figure. Our numerical results, as it is seen from the 
figure, approach the latter when a -+ 0. 

0.75 

0.50 

.--. 
8 
fi 
bc 

fi 

v 

4 . 
0.25 

0 

Linearized theory 

i 
I 
I 
I 
\ 
I 

\ 

/ 
/. 

/ 
/ 

1 2 3 4 

c 
FIGURE 12. The curves yltg (mz) versus 6 for different a. 

At infinity the free-surface curves behave according to (4.31) as 7 M K,(cc) 6-2. 

The treatment of our numerical results shows that at  sufficiently large [ the equa- 
tion of the free surface can be represented in the form 

where q ( a )  and ez(a) are the functions vanishing when a + 0. So, it follows from 
the computations that, at  small a, K,(a) = *a that coincides with the result of the 
linearized theory. Numerical values of the ratio Kl/(&x) are presented in table 1. 

The free-surface behaviour near the point of contact with the wedge can be 
characterized by the value ,l3 = ,l3,,/n, where Po is the angle between the free surface 
and the wedge at the point of contact. The values ,8 for the different wedge angles 
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have been computed with the help of corresponding values f (1) from the formula 
(5.1). The curve /? = P(a) is represented in figure 13 (numerical data are given in 
table 1).  At small a this relationship can be expressed to high accuracy by the 
formula ,8 = 0.1 -+a. 

0.10 

0.08 

0.06 

P 

0.04 

0.02 

0 0.1 0.2 0.3 0.4 0.5 
a 

FIQTJRE 13. The curve of the angle of contact B ve~sus a. 

It is seen from the dependence /? = B(a) that the angle of contact of free surface 
with the wedge increases with decreased wedge angle. However, with a -+ 0 the 
angle Po does not practically exceed 18". On the other hand, if a = 0 then from 
the statement of the problem it follows directly thatf(t) = 0 and Po = &r. Thus, 
the free surface inclination to the wedge face at  the point of contact has a dis- 
continuityat a = 0 asafmctionof a. This is similar to the problem of symmetrical 
impact of a water wedge on a solid wall. Really, Cumberbatch's (1960) approxi- 
mate computations have shown that with the decrease of half-angle of a fluid 
wedge from 22.5" to 11.25" the tip angle of the stream on a wall increased from 
3" to 4.8". Therefore, it is reasonable to suppose that with the fluid wedge angle 
tending to zero the tip angle of the stream would approach some finite value 
rather than zero. 

The dependence qB = qB(a) for the wedge entry (see figure 10) shows that 
with a -+ 0 the maximum splash qB tends to zero, and the region of disturbance 
vanishes, i.e. the picture of flow in the case of a wedge entry remains in the large 
continuous when a + 0 and a t  a = 0. 

The discontinuity of function /? = /?(a) at a = 0 is the consequence of the model 
of ideal liquid and the similar result in the hydrodynamics of an ideal liquid is not 
a single one. So, in the flow past the plate inclined to the flow direction at  angle 
a, the fluid velocity at the edges of the plate is infinite at any a $: 0,  although 



826 8. N .  Dobrovol'skaya 

at a = 0 the fluid velocity at the edges is equal to the velocity at infinity. But the 
picture of flow past the plate, as in the case of a wedge entry, changes on the 
whole, continuously when a -+ 0 and at  a = 0. 

For estimating the accuracy of obtained numerical results we have checked 
two conditions: the incompressibility of a fluid and the conservation of the arc 
length along the free surface.t 

In  order to verify the incompressibility condition we have computed the area S 
of the flow region above the axis of abscissas and then this area was compared 
with the area A of that part of the wedge which was under the axis of abscissas. 
For verifying the second condition mentioned above we have computed the 
length 1 of the part of the free surface from the point of contact B to that point 
of the free surface which ordinate could be practically taken as zero, and then the 
value 1 was compared with the abscissa f* of this point. 

For the wedge angles 2a, up to 18" (a = 0.05) inclusive, the condition of con- 
servation of the arc length ( (*- - l  = 0) has proved to be satisfied to within 
I (f* - H) : qBl = 0.004 and the incompressibility condition to within 

When 2a, > 18" the computations have been done with a smaller accuracy. So, 
for a = Q the computations have been done to within 0.01 and 0.03, respectively, 
and for a = Q (the wedge angle 2a, = 120') only an approximate estimation has 
been obtained (therefore the curves for a, = 60' are drawn in the figures by dotted 
lines). Increase of the accuracy of numerical results and their extension onto the 
angles 2a, > 120' do not induce great difficulties and demand only more machine 
time. 

By means of obtained curvesf(t) for different a the distribution of hydro- 
dynamic pressure on the wedge face has been computed from the formulas (4.32)- 
(4.38). As would be expected, the computations have shown that the pressures 
on the wedge decreased with the decrease of the wedge angle. The dimensionless 
pressure p = Ap/($pvE) at  the wedge apex tends with a -+ 0 to a value close to 1, 
and the pressures on the wedge face tend to zero. The value p, = 1 can be 
obtained also from indirect theoretical considerations. For this purpose it is 
sufficient to use the estimate (4.39) for the behaviour of the pressure in the 
neighbourhood of the wedge apex and to substitute there the values of pressure 
at any two points, calculated by the linearized theory (according to the linearized 
theory the pressure at  the wedge apex itself is infinite). Numerical values of the 
dimensionless pressure p, at the wedge apex are presented for different a in 
table 1. 

As the pressures on the wedge for the small angles a are very small (every- 
where except the neighbourhood of the apex), it is more convenient to compare 
the pressure distribution curves for different wedge angles by considering the 
dependence of pltga, on q rather than p on 7. Figure 14 presents the relations 

t As has been shown by Wagner (1932), the distance (measured along free surface) 
between two arbitrary fluid particles on the free surface remains constant in the similarity 
flow under consideration. 
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p/tg a, versus y for different a (y = - 1 is the wedge apex). The pressure curve for 
a = 0.0001 practically coincides with the curve given by the linearized theory: 

For a, > 3" the pressure distribution curves, as seen from the graphs, begin 
quickly to deviate from the pressure curve of the linearized theory and for a, 
close to 30" these curves have nothing in common with the results of the linearized 
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hc 

42 . 
h N O  

2 

2 
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31 

2 
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0 

r 
FIGURE 14. The curves of the distribution of the dimensionless pressure p 

divided by tg (ro along the wedge face for different angles a. 

theory. The ordinates p/tg a, near the wedge apex (y = - 1) become for the small 
a, as would be expected, very large (but finite), and therefore the values 
p/tg a, at 7 = - 1 are not included in the figure. As seen from figure 14 the pressure 
at the upper part of the splash proves to be practically equal to zero (the ends of 
the splash jets are denoted on the figure by heavy points). 

The pressure distribution curve for a,, = 60" shows that for the large angles a, 
the maximum of the pressure displaces from the wedge apex to some point on the 
face of the wedge, this point being situated for the large a, above the level of the 
initially undisturbed free surface. This qualitative result coincides with the 
Borg (1959) approximate computations. 

With the help of obtained pressure curves we have computed the value of the 
dimensionless total drag force 

acting on the entering wedge (both its faces). The actual drag force P* is connected 
with the ,value P by the obvious relation: P* = pv:tP. The dependence P/tg2a, 
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on a: is represented in figure 15. Numerical values of the ratio of (P/t,g2 a,) to the 
magnitude (P]tg201,),,, obtained as the limit when cto -+ 0, are presented in 
table 1. The analysis of obtained data makes it possible to  represent the force P 
for small wedge angles (a! < 0, I) in the form 

P = 1.765 tg2ao+ 5.8 tg3aO, 

where 1.765 is the magnitude given by the linearized theory. 
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4 2  . 
& 4  
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0 0.1 0.2 0.3 0.4 0.5 

a 
FIGURE 15. The dimensionless drag force P (divided by tgaa,,) 

acting onto the entering wedge, VITSUS a. 

The presented results of numerical calculations for the wedge-water entry 
problem demonstrate the efficiency and practical applicability of the general 
method when using modern digitial computers. 

The theoretical part of this work has been done at  the former Institute of 
Mechanics of the USSR Academy of Sciences, in the Department of Prof. L. A. 
Galin, member of the Academy, to whom the author is grateful for many useful 
discussions. The development of the numerical methods of solving the wedge 
problem and all the calculations have been carried out by the author at the Com- 
puting Centre of the Academy. 

The author is greatly indebted to Prof. G.K.Mikhailov for his constant 
attention to this work and many valuable ideas. 
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